Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Synthetic Social Media Influence Experimentation via an Agentic Reinforcement Learning Large Language Model Bot (2411.19635v2)

Published 29 Nov 2024 in cs.SI and cs.CY

Abstract: Understanding the dynamics of public opinion evolution on online social platforms is crucial for understanding influence mechanisms and the provenance of information. Traditional influence analysis is typically divided into qualitative assessments of personal attributes (e.g., psychology of influence) and quantitative evaluations of influence power mechanisms (e.g., social network analysis). One challenge faced by researchers is the ethics of real-world experimentation and the lack of social influence data. In this study, we provide a novel simulated environment that combines agentic intelligence with LLMs to test topic-specific influence mechanisms ethically. Our framework contains agents that generate posts, form opinions on specific topics, and socially follow/unfollow each other based on the outcome of discussions. This simulation allows researchers to observe the evolution of how opinions form and how influence leaders emerge. Using our own framework, we design an opinion leader that utilizes Reinforcement Learning (RL) to adapt its linguistic interaction with the community to maximize its influence and followers over time. Our current findings reveal that constraining the action space and incorporating self-observation are key factors for achieving stable and consistent opinion leader generation for topic-specific influence. This demonstrates the simulation framework's capacity to create agents that can adapt to complex and unpredictable social dynamics. The work is important in an age of increasing online influence on social attitudes and emerging technologies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.