Papers
Topics
Authors
Recent
2000 character limit reached

On Moving Object Segmentation from Monocular Video with Transformers (2411.19141v1)

Published 28 Nov 2024 in cs.CV and cs.AI

Abstract: Moving object detection and segmentation from a single moving camera is a challenging task, requiring an understanding of recognition, motion and 3D geometry. Combining both recognition and reconstruction boils down to a fusion problem, where appearance and motion features need to be combined for classification and segmentation. In this paper, we present a novel fusion architecture for monocular motion segmentation - M3Former, which leverages the strong performance of transformers for segmentation and multi-modal fusion. As reconstructing motion from monocular video is ill-posed, we systematically analyze different 2D and 3D motion representations for this problem and their importance for segmentation performance. Finally, we analyze the effect of training data and show that diverse datasets are required to achieve SotA performance on Kitti and Davis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.