Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ABROCA Distributions For Algorithmic Bias Assessment: Considerations Around Interpretation (2411.19090v1)

Published 28 Nov 2024 in stat.ML and cs.LG

Abstract: Algorithmic bias continues to be a key concern of learning analytics. We study the statistical properties of the Absolute Between-ROC Area (ABROCA) metric. This fairness measure quantifies group-level differences in classifier performance through the absolute difference in ROC curves. ABROCA is particularly useful for detecting nuanced performance differences even when overall Area Under the ROC Curve (AUC) values are similar. We sample ABROCA under various conditions, including varying AUC differences and class distributions. We find that ABROCA distributions exhibit high skewness dependent on sample sizes, AUC differences, and class imbalance. When assessing whether a classifier is biased, this skewness inflates ABROCA values by chance, even when data is drawn (by simulation) from populations with equivalent ROC curves. These findings suggest that ABROCA requires careful interpretation given its distributional properties, especially when used to assess the degree of bias and when classes are imbalanced.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: