Papers
Topics
Authors
Recent
2000 character limit reached

Learning Optimal Linear Block Transform by Rate Distortion Minimization (2411.18494v1)

Published 27 Nov 2024 in eess.IV

Abstract: Linear block transform coding remains a fundamental component of image and video compression. Although the Discrete Cosine Transform (DCT) is widely employed in all current compression standards, its sub-optimality has sparked ongoing research into discovering more efficient alternative transforms even for fields where it represents a consolidated tool. In this paper, we introduce a novel linear block transform called the Rate Distortion Learned Transform (RDLT), a data-driven transform specifically designed to minimize the rate-distortion (RD) cost when approximating residual blocks. Our approach builds on the latest end-to-end learned compression frameworks, adopting back-propagation and stochastic gradient descent for optimization. However, unlike the nonlinear transforms used in variational autoencoder (VAE)-based methods, the goal is to create a simpler yet optimal linear block transform, ensuring practical integration into existing image and video compression standards. Differently from existing data-driven methods that design transforms based on sample covariance matrices, such as the Karhunen-Lo`eve Transform (KLT), the proposed RDLT is directly optimized from an RD perspective. Experimental results show that this transform significantly outperforms the DCT or other existing data-driven transforms. Additionally, it is shown that when simulating the integration of our RDLT into a VVC-like image compression framework, the proposed transform brings substantial improvements. All the code used in our experiments has been made publicly available at [1].

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.