The Fourier Extension Conjecture in three dimensions
Abstract: The Fourier extension conjecture in $n\geq 2$ dimensions is, \begin{equation*} \left\Vert \widehat{fd\sigma {n-1}}\right\Vert _{L{p}\left( \mathbb{R}% {n}\right) }\leq C{p}\left\Vert f\right\Vert _{L{p}\left( \sigma _{n-1}\right) },\ \text{for }f\in L{p}\left( \sigma _{n-1}\right) \text{ and }p>\frac{2n}{n-1}, \end{equation*} where $\sigma _{n-1}$ is surface measure on the sphere $\mathbb{S}{n-1}$. We give a proof of this conjecture in dimension $n=3$ that uses trilinear estimates for Fourier transforms of smooth Alpert wavelets, corresponding local linear Fourier estimates for smooth Alpert wavelets with geometric decay, and the deterministic estimates from the author's paper on probabilistic Fourier extension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.