A gentle push funziona benissimo: making instructed models in Italian via contrastive activation steering (2411.18247v1)
Abstract: Adapting models to a language that was only partially present in the pre-training data requires fine-tuning, which is expensive in terms of both data and computational resources. As an alternative to fine-tuning, we explore the potential of activation steering-based techniques to enhance model performance on Italian tasks. Through our experiments we show that Italian steering (i) can be successfully applied to different models, (ii) achieves performances comparable to, or even better than, fine-tuned models for Italian, and (iii) yields higher quality and consistency in Italian generations. We also discuss the utility of steering and fine-tuning in the contemporary LLM landscape where models are anyway getting high Italian performances even if not explicitly trained in this language.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.