Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Enhancing Prohibited Item Detection through X-ray-Specific Augmentation and Contextual Feature Integration (2411.18078v2)

Published 27 Nov 2024 in cs.CV

Abstract: X-ray prohibited item detection faces challenges due to the long-tail distribution and unique characteristics of X-ray imaging. Traditional data augmentation strategies, such as copy-paste and mixup, are ineffective at improving the detection of rare items due to the complex interactions between overlapping objects. Furthermore, X-ray imaging removes easily distinguishable features like color and texture, making it difficult to differentiate between visually similar categories. To address these challenges, in this work, we propose the X-ray Imaging-driven Detection Network (XIDNet). Inspired by the unique characteristics of X-ray imaging, this network introduces two key innovations: a novel X-ray-specific augmentation strategy that generates more realistic training samples for rare items, thereby improving detection performance for categories with insufficient samples, and an contextual feature integration algorithm that captures the spatial and semantic interactions between objects and surroundings under X-ray imaging, enhancing the model's ability to distinguish between similar categories. Extensive experimental results show that XIDNet effectively leverages X-ray imaging characteristics to significantly improve detection performance, outperforming popular SoTA methods by up to 17.2% in tail categories.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.