Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Repeated sampling of different individuals but the same clusters to improve precision of difference-in-differences estimators: the DISC design (2411.17905v1)

Published 26 Nov 2024 in stat.ME

Abstract: We describe the DISC (Different Individuals, Same Clusters) design, a sampling scheme that can improve the precision of difference-in-differences (DID) estimators in settings involving repeated sampling of a population at multiple time points. Although cohort designs typically lead to more efficient DID estimators relative to repeated cross-sectional (RCS) designs, they are often impractical in practice due to high rates of loss-to-follow-up, individuals leaving the risk set, or other reasons. The DISC design represents a hybrid between a cohort sampling design and a RCS sampling design, an alternative strategy in which the researcher takes a single sample of clusters, but then takes different cross-sectional samples of individuals within each cluster at two or more time points. We show that the DISC design can yield DID estimators with much higher precision relative to a RCS design, particularly if random cluster effects are present in the data-generating mechanism. For example, for a design in which 40 clusters and 25 individuals per cluster are sampled (for a total sample size of n=1,000), the variance of a commonly-used DID treatment effect estimator is 2.3 times higher in the RCS design for an intraclass correlation coefficient (ICC) of 0.05, 3.8 times higher for an ICC of 0.1, and 7.3 times higher for an ICC of 0.2.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube