Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On quasi-convex smooth optimization problems by a comparison oracle (2411.16745v1)

Published 23 Nov 2024 in math.OC

Abstract: Frequently, when dealing with many machine learning models, optimization problems appear to be challenging due to a limited understanding of the constructions and characterizations of the objective functions in these problems. Therefore, major complications arise when dealing with first-order algorithms, in which gradient computations are challenging or even impossible in various scenarios. For this reason, we resort to derivative-free methods (zeroth-order methods). This paper is devoted to an approach to minimizing quasi-convex functions using a recently proposed comparison oracle only. This oracle compares function values at two points and tells which is larger, thus by the proposed approach, the comparisons are all we need to solve the optimization problem under consideration. The proposed algorithm to solve the considered problem is based on the technique of comparison-based gradient direction estimation and the comparison-based approximation normalized gradient descent. The normalized gradient descent algorithm is an adaptation of gradient descent, which updates according to the direction of the gradients, rather than the gradients themselves. We proved the convergence rate of the proposed algorithm when the objective function is smooth and strictly quasi-convex in $\mathbb{R}n$, this algorithm needs $\mathcal{O}\left( \left(n D2/\varepsilon2 \right) \log\left(n D / \varepsilon\right)\right)$ comparison queries to find an $\varepsilon$-approximate of the optimal solution, where $D$ is an upper bound of the distance between all generated iteration points and an optimal solution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.