Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Recurrent Joint Embedding Predictive Architecture with Recurrent Forward Propagation Learning (2411.16695v1)

Published 10 Nov 2024 in cs.NE and cs.LG

Abstract: Conventional computer vision models rely on very deep, feedforward networks processing whole images and trained offline with extensive labeled data. In contrast, biological vision relies on comparatively shallow, recurrent networks that analyze sequences of fixated image patches, learning continuously in real-time without explicit supervision. This work introduces a vision network inspired by these biological principles. Specifically, it leverages a joint embedding predictive architecture incorporating recurrent gated circuits. The network learns by predicting the representation of the next image patch (fixation) based on the sequence of past fixations, a form of self-supervised learning. We show mathematical and empirically that the training algorithm avoids the problem of representational collapse. We also introduce \emph{Recurrent-Forward Propagation}, a learning algorithm that avoids biologically unrealistic backpropagation through time or memory-inefficient real-time recurrent learning. We show mathematically that the algorithm implements exact gradient descent for a large class of recurrent architectures, and confirm empirically that it learns efficiently. This paper focuses on these theoretical innovations and leaves empirical evaluation of performance in downstream tasks, and analysis of representational similarity with biological vision for future work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube