Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Infinite-dimensional Convex Cones: Internal Geometric Structure and Analytical Representation (2411.16209v1)

Published 25 Nov 2024 in math.OC

Abstract: In the paper we consider convex cones in infinite-dimensional real vector spaces which are endowed with no topology. The main purpose is to study an internal geometric structure of convex cones and to obtain an analytical description of those. To this end, we first introduce the notion of an open component of a convex cone and then prove that an arbitrary convex cone is the disjoint union of the partial ordered family of its open components and, moreover, as an ordered set this family is an upper semilattice. We identify the structure of this upper semilattice with the internal geometric structure of a convex cone. We demonstrate that the internal geometric structure of a convex cone is related to its facial structure but in the infinite-dimensional setting these two structures may differ each other. Further, we study the internal geometric structure of conical halfspaces (convex cones whose complements are also convex cones). We show that every conical halfspace is the disjoint union of the linear ordered family of its open components each of which is a conical halfspace in its linear hull. Using the internal geometric structure of conical halfspaces, each asymmetric conical halfspace is associated with a linearly ordered family of linear functions, which generates in turn a real-valued function, called a step-linear one, analytically describing this conical halfspace. At last, we establish that an arbitrary asymmetric convex cone admits an analytical representation by the family of step-linear functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube