Papers
Topics
Authors
Recent
2000 character limit reached

Deep Sparse Latent Feature Models for Knowledge Graph Completion (2411.15694v2)

Published 24 Nov 2024 in cs.CL

Abstract: Recent advances in knowledge graph completion (KGC) have emphasized text-based approaches to navigate the inherent complexities of large-scale knowledge graphs (KGs). While these methods have achieved notable progress, they frequently struggle to fully incorporate the global structural properties of the graph. Stochastic blockmodels (SBMs), especially the latent feature relational model (LFRM), offer robust probabilistic frameworks for identifying latent community structures and improving link prediction. This paper presents a novel probabilistic KGC framework utilizing sparse latent feature models, optimized via a deep variational autoencoder (VAE). Our proposed method dynamically integrates global clustering information with local textual features to effectively complete missing triples, while also providing enhanced interpretability of the underlying latent structures. Extensive experiments on four benchmark datasets with varying scales demonstrate the significant performance gains achieved by our method.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.