Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

"All that Glitters": Approaches to Evaluations with Unreliable Model and Human Annotations (2411.15634v1)

Published 23 Nov 2024 in cs.CL, cs.AI, and stat.AP

Abstract: "Gold" and "ground truth" human-mediated labels have error. The effects of this error can escape commonly reported metrics of label quality or obscure questions of accuracy, bias, fairness, and usefulness during model evaluation. This study demonstrates methods for answering such questions even in the context of very low reliabilities from expert humans. We analyze human labels, GPT model ratings, and transformer encoder model annotations describing the quality of classroom teaching, an important, expensive, and currently only human task. We answer the question of whether such a task can be automated using two LLM architecture families--encoders and GPT decoders, using novel approaches to evaluating label quality across six dimensions: Concordance, Confidence, Validity, Bias, Fairness, and Helpfulness. First, we demonstrate that using standard metrics in the presence of poor labels can mask both label and model quality: the encoder family of models achieve state-of-the-art, even "super-human", results across all classroom annotation tasks. But not all these positive results remain after using more rigorous evaluation measures which reveal spurious correlations and nonrandom racial biases across models and humans. This study then expands these methods to estimate how model use would change to human label quality if models were used in a human-in-the-loop context, finding that the variance captured in GPT model labels would worsen reliabilities for humans influenced by these models. We identify areas where some LLMs, within the generalizability of the current data, could improve the quality of expensive human ratings of classroom instruction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube