Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

LAGUNA: LAnguage Guided UNsupervised Adaptation with structured spaces (2411.15557v3)

Published 23 Nov 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Unsupervised domain adaptation remains a critical challenge in enabling the knowledge transfer of models across unseen domains. Existing methods struggle to balance the need for domain-invariant representations with preserving domain-specific features, which is often due to alignment approaches that impose the projection of samples with similar semantics close in the latent space despite their drastic domain differences. We introduce LAGUNA - LAnguage Guided UNsupervised Adaptation with structured spaces, a novel approach that shifts the focus from aligning representations in absolute coordinates to aligning the relative positioning of equivalent concepts in latent spaces. LAGUNA defines a domain-agnostic structure upon the semantic/geometric relationships between class labels in language space and guides adaptation, ensuring that the organization of samples in visual space reflects reference inter-class relationships while preserving domain-specific characteristics. We empirically demonstrate LAGUNA's superiority in domain adaptation tasks across four diverse images and video datasets. Remarkably, LAGUNA surpasses previous works in 18 different adaptation scenarios across four diverse image and video datasets with average accuracy improvements of +3.32% on DomainNet, +5.75% in GeoPlaces, +4.77% on GeoImnet, and +1.94% mean class accuracy improvement on EgoExo4D.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.