Papers
Topics
Authors
Recent
Search
2000 character limit reached

2-dimensional Shephard groups

Published 23 Nov 2024 in math.GR, math.AT, and math.MG | (2411.15434v1)

Abstract: The 2-dimensional Shephard groups are quotients of 2-dimensional Artin groups by powers of standard generators. We show that such a quotient is not $\mathrm{CAT}(0)$ if the powers taken are sufficiently large. However, for a given 2-dimensional Shephard group, we construct a $\mathrm{CAT}(0)$ piecewise Euclidean cell complex with a cocompact action (analogous to the Deligne complex for an Artin group) that allows us to determine other non-positive curvature properties. Namely, we show the 2-dimensional Shephard groups are acylindrically hyperbolic (which was known for 2-dimensional Artin groups), and relatively hyperbolic (which most Artin groups are known not to be). As an application, we show that a broad class of 2-dimensional Artin groups are residually finite.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.