Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Uncertain standard quadratic optimization under distributional assumptions: a chance-constrained epigraphic approach (2411.14884v3)

Published 22 Nov 2024 in math.OC

Abstract: The standard quadratic optimization problem (StQP) consists of minimizing a quadratic form over the standard simplex. Without convexity or concavity of the quadratic form, the StQP is NP-hard. This problem has many relevant real-life applications ranging portfolio optimization to pairwise clustering and replicator dynamics. Sometimes, the data matrix is uncertain. We investigate models where the distribution of the data matrix is known but where both the StQP after realization of the data matrix and the here-and-now problem are indefinite. We test the performance of a chance-constrained epigraphic StQP to the uncertain StQP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: