Papers
Topics
Authors
Recent
2000 character limit reached

An Attention-based Framework for Fair Contrastive Learning (2411.14765v1)

Published 22 Nov 2024 in cs.LG

Abstract: Contrastive learning has proven instrumental in learning unbiased representations of data, especially in complex environments characterized by high-cardinality and high-dimensional sensitive information. However, existing approaches within this setting require predefined modelling assumptions of bias-causing interactions that limit the model's ability to learn debiased representations. In this work, we propose a new method for fair contrastive learning that employs an attention mechanism to model bias-causing interactions, enabling the learning of a fairer and semantically richer embedding space. In particular, our attention mechanism avoids bias-causing samples that confound the model and focuses on bias-reducing samples that help learn semantically meaningful representations. We verify the advantages of our method against existing baselines in fair contrastive learning and show that our approach can significantly boost bias removal from learned representations without compromising downstream accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.