Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Fair Robustness via Domain Mixup (2411.14424v1)

Published 21 Nov 2024 in cs.LG, cs.CR, and cs.CY

Abstract: Adversarial training is one of the predominant techniques for training classifiers that are robust to adversarial attacks. Recent work, however has found that adversarial training, which makes the overall classifier robust, it does not necessarily provide equal amount of robustness for all classes. In this paper, we propose the use of mixup for the problem of learning fair robust classifiers, which can provide similar robustness across all classes. Specifically, the idea is to mix inputs from the same classes and perform adversarial training on mixed up inputs. We present a theoretical analysis of this idea for the case of linear classifiers and show that mixup combined with adversarial training can provably reduce the class-wise robustness disparity. This method not only contributes to reducing the disparity in class-wise adversarial risk, but also the class-wise natural risk. Complementing our theoretical analysis, we also provide experimental results on both synthetic data and the real world dataset (CIFAR-10), which shows improvement in class wise disparities for both natural and adversarial risks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube