Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CFA: Class-wise Calibrated Fair Adversarial Training (2303.14460v1)

Published 25 Mar 2023 in cs.LG and cs.CV

Abstract: Adversarial training has been widely acknowledged as the most effective method to improve the adversarial robustness against adversarial examples for Deep Neural Networks (DNNs). So far, most existing works focus on enhancing the overall model robustness, treating each class equally in both the training and testing phases. Although revealing the disparity in robustness among classes, few works try to make adversarial training fair at the class level without sacrificing overall robustness. In this paper, we are the first to theoretically and empirically investigate the preference of different classes for adversarial configurations, including perturbation margin, regularization, and weight averaging. Motivated by this, we further propose a \textbf{C}lass-wise calibrated \textbf{F}air \textbf{A}dversarial training framework, named CFA, which customizes specific training configurations for each class automatically. Experiments on benchmark datasets demonstrate that our proposed CFA can improve both overall robustness and fairness notably over other state-of-the-art methods. Code is available at \url{https://github.com/PKU-ML/CFA}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zeming Wei (24 papers)
  2. Yifei Wang (141 papers)
  3. Yiwen Guo (58 papers)
  4. Yisen Wang (120 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.