Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

$d_X$-Privacy for Text and the Curse of Dimensionality (2411.13784v1)

Published 21 Nov 2024 in cs.CR

Abstract: A widely used method to ensure privacy of unstructured text data is the multidimensional Laplace mechanism for $d_X$-privacy, which is a relaxation of differential privacy for metric spaces. We identify an intriguing peculiarity of this mechanism. When applied on a word-by-word basis, the mechanism either outputs the original word, or completely dissimilar words, and very rarely any semantically similar words. We investigate this observation in detail, and tie it to the fact that the distance of the nearest neighbor of a word in any word embedding model (which are high-dimensional) is much larger than the relative difference in distances to any of its two consecutive neighbors. We also show that the dot product of the multidimensional Laplace noise vector with any word embedding plays a crucial role in designating the nearest neighbor. We derive the distribution, moments and tail bounds of this dot product. We further propose a fix as a post-processing step, which satisfactorily removes the above-mentioned issue.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.