Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Segment Any Class (SAC): Multi-Class Few-Shot Semantic Segmentation via Class Region Proposals (2411.13774v1)

Published 21 Nov 2024 in cs.CV

Abstract: The Segment-Anything Model (SAM) is a vision foundation model for segmentation with a prompt-driven framework. SAM generates class-agnostic masks based on user-specified instance-referring prompts. However, adapting SAM for automated segmentation -- where manual input is absent -- of specific object classes often requires additional model training. We present Segment Any Class (SAC), a novel, training-free approach that task-adapts SAM for Multi-class segmentation. SAC generates Class-Region Proposals (CRP) on query images which allows us to automatically generate class-aware prompts on probable locations of class instances. CRPs are derived from elementary intra-class and inter-class feature distinctions without any additional training. Our method is versatile, accommodating any N-way K-shot configurations for the multi-class few-shot semantic segmentation (FSS) task. Unlike gradient-learning adaptation of generalist models which risk the loss of generalization and potentially suffer from catastrophic forgetting, SAC solely utilizes automated prompting and achieves superior results over state-of-the-art methods on the COCO-20i benchmark, particularly excelling in high N-way class scenarios. SAC is an interesting demonstration of a prompt-only approach to adapting foundation models for novel tasks with small, limited datasets without any modifications to the foundation model itself. This method offers interesting benefits such as intrinsic immunity to concept or feature loss and rapid, online task adaptation of foundation models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.