Almost Sure Convergence Rates and Concentration of Stochastic Approximation and Reinforcement Learning with Markovian Noise (2411.13711v1)
Abstract: This paper establishes the first almost sure convergence rate and the first maximal concentration bound with exponential tails for general contractive stochastic approximation algorithms with Markovian noise. As a corollary, we also obtain convergence rates in $Lp$. Key to our successes is a novel discretization of the mean ODE of stochastic approximation algorithms using intervals with diminishing (instead of constant) length. As applications, we provide the first almost sure convergence rate for $Q$-learning with Markovian samples without count-based learning rates. We also provide the first concentration bound for off-policy temporal difference learning with Markovian samples.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.