Papers
Topics
Authors
Recent
2000 character limit reached

Nonlocal Hamilton-Jacobi Equations on a network with Kirchhoff type conditions (2411.13126v1)

Published 20 Nov 2024 in math.AP

Abstract: In this article, we consider nonlocal Hamilton-Jacobi Equations on networks with Kirchhoff type conditions for the interior vertices and Dirichlet boundary conditions for the boundary ones: our aim is to provide general existence and comparison results in the case when the integro-differential operators are of order strictly less than 1. The main originality of these results is to allow these nonlocal terms to have contributions on several different edges of the network. The existence of Lipschitz continuous solutions is proved in two ways: either by using the vanishing viscosity method or by the usual Perron's method. The comparison proof relies on arguments introduced by Lions and Souganidis. We also introduce a notion of flux-limited solution, nonlocal analog to the one introduced by Imbert and Monneau, and prove that the solutions of the Kirchhoff problem are flux-limited solutions for a suitable flux-limiter. After treating in details the case when we only have one interior vertex, we extend our approach to treat general networks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.