Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Probabilistic Dynamic Line Rating Forecasting with Line Graph Convolutional LSTM (2411.12963v2)

Published 20 Nov 2024 in eess.SY and cs.SY

Abstract: Dynamic line rating (DLR) is a promising solution to increase the utilization of transmission lines by adjusting ratings based on real-time weather conditions. Accurate DLR forecast at the scheduling stage is thus necessary for system operators to proactively optimize power flows, manage congestion, and reduce the cost of grid operations. However, the DLR forecast remains challenging due to weather uncertainty. To reliably predict DLRs, we propose a new probabilistic forecasting model based on line graph convolutional LSTM. Like standard LSTM networks, our model accounts for temporal correlations between DLRs across the planning horizon. The line graph-structured network additionally allows us to leverage the spatial correlations of DLR features across the grid to improve the quality of predictions. Simulation results on the synthetic Texas 123-bus system demonstrate that the proposed model significantly outperforms the baseline probabilistic DLR forecasting models regarding reliability and sharpness while using the fewest parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.