Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quadratic projectable Runge-Kutta methods (2411.12634v1)

Published 19 Nov 2024 in math.NA and cs.NA

Abstract: Runge-Kutta methods are affine equivariant: applying a method before or after an affine change of variables yields the same numerical trajectory. However, for some applications, one would like to perform numerical integration after a quadratic change of variables. For example, in Lie-Poisson reduction, a quadratic transformation reduces the number of variables in a Hamiltonian system, yielding a more efficient representation of the dynamics. Unfortunately, directly applying a symplectic Runge-Kutta method to the reduced system generally does not preserve its Hamiltonian structure, so many proposed techniques require computing numerical trajectories of the original, unreduced system. In this paper, we study when a Runge-Kutta method in the original variables descends to a numerical integrator expressible entirely in terms of the quadratically transformed variables. In particular, we show that symplectic diagonally implicit Runge-Kutta (SyDIRK) methods, applied to a quadratic projectable vector field, are precisely the Runge-Kutta methods that descend to a method (generally not of Runge-Kutta type) in the projected variables. We illustrate our results with several examples in both conservative and non-conservative dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube