Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete LQR and ILQR methods based on high order Runge-Kutta methods (2112.15261v1)

Published 31 Dec 2021 in math.NA, cs.NA, and math.OC

Abstract: In this paper, discrete linear quadratic regulator (DLQR) and iterative linear quadratic regulator (ILQR) methods based on high-order Runge-Kutta (RK) discretization are proposed for solving linear and nonlinear quadratic optimal control problems respectively. As discovered in [W. Hager, Runge-Kutta method in optimal control and the discrete adjoint system, Numer. Math.,2000, pp. 247-282], direct approach with RK discretization is equivalent with indirect approach based on symplectic partitioned Runge-Kutta (SPRK) integration. In this paper, we will reconstruct this equivalence by the analogue of continuous and discrete dynamic programming. Then, based on the equivalence, we discuss the issue that the internal-stage controls produced by direct approach may have lower order accuracy than the RK method used. We propose order conditions for internal-stage controls and then demonstrate that third or fourth order explicit RK discretization cannot avoid the order reduction phenomenon. To overcome this obstacle, we calculate node control instead of internal-stage controls in DLQR and ILQR methods. And numerical examples will illustrate the validity of our methods. Another advantage of our methods is high computational efficiency which comes from the usage of feedback technique. In this paper, we also demonstrate that ILQR is essentially a quasi-Newton method with linear convergence rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.