Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Bayesian causal estimation for causal inference in medical diagnosis (2411.12477v1)

Published 19 Nov 2024 in stat.ME and stat.AP

Abstract: Causal effect estimation is a critical task in statistical learning that aims to find the causal effect on subjects by identifying causal links between a number of predictor (or, explanatory) variables and the outcome of a treatment. In a regressional framework, we assign a treatment and outcome model to estimate the average causal effect. Additionally, for high dimensional regression problems, variable selection methods are also used to find a subset of predictor variables that maximises the predictive performance of the underlying model for better estimation of the causal effect. In this paper, we propose a different approach. We focus on the variable selection aspects of high dimensional causal estimation problem. We suggest a cautious Bayesian group LASSO (least absolute shrinkage and selection operator) framework for variable selection using prior sensitivity analysis. We argue that in some cases, abstaining from selecting (or, rejecting) a predictor is beneficial and we should gather more information to obtain a more decisive result. We also show that for problems with very limited information, expert elicited variable selection can give us a more stable causal effect estimation as it avoids overfitting. Lastly, we carry a comparative study with synthetic dataset and show the applicability of our method in real-life situations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.