Moral Persuasion in Large Language Models: Evaluating Susceptibility and Ethical Alignment (2411.11731v1)
Abstract: We explore how LLMs can be influenced by prompting them to alter their initial decisions and align them with established ethical frameworks. Our study is based on two experiments designed to assess the susceptibility of LLMs to moral persuasion. In the first experiment, we examine the susceptibility to moral ambiguity by evaluating a Base Agent LLM on morally ambiguous scenarios and observing how a Persuader Agent attempts to modify the Base Agent's initial decisions. The second experiment evaluates the susceptibility of LLMs to align with predefined ethical frameworks by prompting them to adopt specific value alignments rooted in established philosophical theories. The results demonstrate that LLMs can indeed be persuaded in morally charged scenarios, with the success of persuasion depending on factors such as the model used, the complexity of the scenario, and the conversation length. Notably, LLMs of distinct sizes but from the same company produced markedly different outcomes, highlighting the variability in their susceptibility to ethical persuasion.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.