Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Treatment Effect Estimators as Weighted Outcomes (2411.11559v2)

Published 18 Nov 2024 in econ.EM

Abstract: Estimators that weight observed outcomes to form effect estimates have a long tradition. Their outcome weights are widely used in established procedures, such as checking covariate balance, characterizing target populations, or detecting and managing extreme weights. This paper introduces a general framework for deriving such outcome weights. It establishes when and how numerical equivalence between an original estimator representation as moment condition and a unique weighted representation can be obtained. The framework is applied to derive novel outcome weights for the six seminal instances of double machine learning and generalized random forests, while recovering existing results for other estimators as special cases. The analysis highlights that implementation choices determine (i) the availability of outcome weights and (ii) their properties. Notably, standard implementations of partially linear regression-based estimators, like causal forests, employ outcome weights that do not sum to (minus) one in the (un)treated group, not fulfilling a property often considered desirable.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)