Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal transport weights for causal inference (2109.01991v4)

Published 5 Sep 2021 in stat.ME, cs.LG, econ.EM, and stat.ML

Abstract: Imbalance in covariate distributions leads to biased estimates of causal effects. Weighting methods attempt to correct this imbalance but rely on specifying models for the treatment assignment mechanism, which is unknown in observational studies. This leaves researchers to choose the proper weighting method and the appropriate covariate functions for these models without knowing the correct combination to achieve distributional balance. In response to these difficulties, we propose a nonparametric generalization of several other weighting schemes found in the literature: Causal Optimal Transport. This new method directly targets distributional balance by minimizing optimal transport distances between treatment and control groups or, more generally, between any source and target population. Our approach is semiparametrically efficient and model-free but can also incorporate moments or any other important functions of covariates that a researcher desires to balance. Moreover, our method can provide nonparametric estimate the conditional mean outcome function and we give rates for the convergence of this estimator. Moreover, we show how this method can provide nonparametric imputations of the missing potential outcomes and give rates of convergence for this estimator. We find that Causal Optimal Transport outperforms competitor methods when both the propensity score and outcome models are misspecified, indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of our method in an external control trial examining the effect of misoprostol versus oxytocin for the treatment of post-partum hemorrhage.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Eric Dunipace (2 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com