Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

TP-UNet: Temporal Prompt Guided UNet for Medical Image Segmentation (2411.11305v2)

Published 18 Nov 2024 in cs.CV and cs.AI

Abstract: The advancement of medical image segmentation techniques has been propelled by the adoption of deep learning techniques, particularly UNet-based approaches, which exploit semantic information to improve the accuracy of segmentations. However, the order of organs in scanned images has been disregarded by current medical image segmentation approaches based on UNet. Furthermore, the inherent network structure of UNet does not provide direct capabilities for integrating temporal information. To efficiently integrate temporal information, we propose TP-UNet that utilizes temporal prompts, encompassing organ-construction relationships, to guide the segmentation UNet model. Specifically, our framework is featured with cross-attention and semantic alignment based on unsupervised contrastive learning to combine temporal prompts and image features effectively. Extensive evaluations on two medical image segmentation datasets demonstrate the state-of-the-art performance of TP-UNet. Our implementation will be open-sourced after acceptance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.