Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ZeFaV: Boosting Large Language Models for Zero-shot Fact Verification (2411.11247v1)

Published 18 Nov 2024 in cs.CL and cs.AI

Abstract: In this paper, we propose ZeFaV - a zero-shot based fact-checking verification framework to enhance the performance on fact verification task of LLMs by leveraging the in-context learning ability of LLMs to extract the relations among the entities within a claim, re-organized the information from the evidence in a relationally logical form, and combine the above information with the original evidence to generate the context from which our fact-checking model provide verdicts for the input claims. We conducted empirical experiments to evaluate our approach on two multi-hop fact-checking datasets including HoVer and FEVEROUS, and achieved potential results results comparable to other state-of-the-art fact verification task methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.