Entropy and type-token ratio in gigaword corpora (2411.10227v3)
Abstract: There are different ways of measuring diversity in complex systems. In particular, in language, lexical diversity is characterized in terms of the type-token ratio and the word entropy. We here investigate both diversity metrics in six massive linguistic datasets in English, Spanish, and Turkish, consisting of books, news articles, and tweets. These gigaword corpora correspond to languages with distinct morphological features and differ in registers and genres, thus constituting a varied testbed for a quantitative approach to lexical diversity. We unveil an empirical functional relation between entropy and type-token ratio of texts of a given corpus and language, which is a consequence of the statistical laws observed in natural language. Further, in the limit of large text lengths we find an analytical expression for this relation relying on both Zipf and Heaps laws that agrees with our empirical findings.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.