Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the existence of factors intersecting sets of cycles in regular graphs (2411.09806v1)

Published 14 Nov 2024 in math.CO and cs.DM

Abstract: A recent result by Kardo\v{s}, M\'a\v{c}ajov\'a and Zerafa [J. Comb. Theory, Ser. B. 160 (2023) 1--14] related to the famous Berge-Fulkerson conjecture implies that given an arbitrary set of odd pairwise edge-disjoint cycles, say $\mathcal O$, in a bridgeless cubic graph, there exists a $1$-factor intersecting all cycles in $\mathcal O$ in at least one edge. This remarkable result opens up natural generalizations in the case of an $r$-regular graph $G$ and a $t$-factor $F$, with $r$ and $t$ being positive integers. In this paper, we start the study of this problem by proving necessary and sufficient conditions on $G$, $t$ and $r$ to assure the existence of a suitable $F$ for any possible choice of the set $\mathcal O$. First of all, we show that $G$ needs to be $2$-connected. Under this additional assumption, we highlight how the ratio $\frac{t}{r}$ seems to play a crucial role in assuring the existence of a $t$-factor $F$ with the required properties by proving that $\frac{t}{r} \geq \frac{1}{3}$ is a further necessary condition. We suspect that this condition is also sufficient, and we confirm it in the case $\frac{t}{r}=\frac{1}{3}$, generalizing the case $t=1$ and $r=3$ proved by Kardo\v{s}, M\'a\v{c}ajov\'a, Zerafa, and in the case $\frac{t}{r}=\frac{1}{2}$ with $t$ even. Finally, we provide further results in the case of cycles of arbitrary length.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube