Papers
Topics
Authors
Recent
2000 character limit reached

A Bayesian Optimization Approach to Machine Translation Reranking (2411.09694v2)

Published 14 Nov 2024 in cs.CL

Abstract: Reranking a list of candidates from a machine translation system with an external scoring model and returning the highest-scoring candidate remains a simple and effective method for improving the overall output quality. Translation scoring models continue to grow in size, with the best models being comparable to generation models. Thus, reranking can add substantial computational cost to the translation pipeline. In this work, we pose reranking as a Bayesian optimization (BayesOpt) problem. By strategically selecting candidates to score based on a balance of exploration and exploitation, we show that it is possible to find top-scoring candidates when scoring only a fraction of the candidate list. For instance, our method achieves the same CometKiwi score using only 70 scoring evaluations compared a baseline system using 180. We present a multi-fidelity setting for BayesOpt, where the candidates are first scored with a cheaper but noisier proxy scoring model, which further improves the cost-performance tradeoff when using smaller but well-trained distilled proxy scorers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 26 likes about this paper.