Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Photonic frequency multiplexed next-generation reservoir computer (2411.09624v1)

Published 14 Nov 2024 in physics.optics

Abstract: In this work, we introduce and experimentally demonstrate a photonic frequency-multiplexed next generation reservoir computer (FM-NGRC) capable of performing real-time inference at GHz speed. NGRCs apply a feed-forward architecture to produce a feature vector directly from the input data over a fixed number of time steps. This feature vector, analogous to the reservoir state in a conventional RC, is used to perform inference by applying a decision layer trained by linear regression. Photonic NGRC provides a flexible platform for real-time inference by forgoing the need for explicit feedback loops inherent to a physical reservoir. The FM-NGRC introduced here defines the memory structure using an optical frequency comb and dispersive fiber while the sinusoidal response of electro-optic Mach-Zehnder interferometers controls the nonlinear transform applied to elements of the feature vector. A programmable waveshaper modulates each comb tooth independently to apply the trained decision layer weights in the analog domain. We apply the FM-NGRC to solve the benchmark nonlinear channel equalization task; after theoretically determining feature vectors that enable high-accuracy distortion compensation, we construct an FM-NGRC that generates these vectors to experimentally demonstrate real-time channel equalization at 5 GS/s with a symbol error rate of $\sim 2\times 10{-3}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.