Papers
Topics
Authors
Recent
2000 character limit reached

A Sylvester equation approach for the computation of zero-group-velocity points in waveguides (2411.09584v1)

Published 14 Nov 2024 in math.NA, cs.NA, and physics.comp-ph

Abstract: Eigenvalues of parameter-dependent quadratic eigenvalue problems form eigencurves. The critical points on these curves, where the derivative vanishes, are of practical interest. A particular example is found in the dispersion curves of elastic waveguides, where such points are called zero-group-velocity (ZGV) points. Recently, it was revealed that the problem of computing ZGV points can be modeled as a multiparameter eigenvalue problem (MEP), and several numerical methods were devised. Due to their complexity, these methods are feasible only for problems involving small matrices. In this paper, we improve the efficiency of these methods by exploiting the link to the Sylvester equation. This approach enables the computation of ZGV points for problems with much larger matrices, such as multi-layered plates and three-dimensional structures of complex cross-sections.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: