Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Matrix Empirical Bernstein Inequalities (2411.09516v4)

Published 14 Nov 2024 in math.PR, math.FA, math.ST, stat.ML, and stat.TH

Abstract: We present two sharp, closed-form empirical Bernstein inequalities for symmetric random matrices with bounded eigenvalues. By sharp, we mean that both inequalities adapt to the unknown variance in a tight manner: the deviation captured by the first-order $1/\sqrt{n}$ term asymptotically matches the matrix Bernstein inequality exactly, including constants, the latter requiring knowledge of the variance. Our first inequality holds for the sample mean of independent matrices, and our second inequality holds for a mean estimator under martingale dependence at stopping times.

Summary

We haven't generated a summary for this paper yet.