Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positive Semidefinite Supermartingales and Randomized Matrix Concentration Inequalities (2401.15567v3)

Published 28 Jan 2024 in math.PR, math.FA, math.ST, stat.ME, stat.ML, and stat.TH

Abstract: We present new concentration inequalities for either martingale dependent or exchangeable random symmetric matrices under a variety of tail conditions, encompassing now-standard Chernoff bounds to self-normalized heavy-tailed settings. These inequalities are often randomized in a way that renders them strictly tighter than existing deterministic results in the literature, are typically expressed in the Loewner order, and are sometimes valid at arbitrary data-dependent stopping times. Along the way, we explore the theory of positive semidefinite supermartingales and maximal inequalities, a natural matrix analog of scalar nonnegative supermartingales that is potentially of independent interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.