Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimension-free tail inequalities for sums of random matrices (1104.1672v3)

Published 9 Apr 2011 in math.PR, cs.LG, and stat.ML

Abstract: We derive exponential tail inequalities for sums of random matrices with no dependence on the explicit matrix dimensions. These are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the dimension is large or infinite. Some applications to principal component analysis and approximate matrix multiplication are given to illustrate the utility of the new bounds.

Citations (23)

Summary

We haven't generated a summary for this paper yet.