Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

EEG-Based Speech Decoding: A Novel Approach Using Multi-Kernel Ensemble Diffusion Models (2411.09302v1)

Published 14 Nov 2024 in cs.SD, cs.AI, eess.AS, and eess.SP

Abstract: In this study, we propose an ensemble learning framework for electroencephalogram-based overt speech classification, leveraging denoising diffusion probabilistic models with varying convolutional kernel sizes. The ensemble comprises three models with kernel sizes of 51, 101, and 201, effectively capturing multi-scale temporal features inherent in signals. This approach improves the robustness and accuracy of speech decoding by accommodating the rich temporal complexity of neural signals. The ensemble models work in conjunction with conditional autoencoders that refine the reconstructed signals and maximize the useful information for downstream classification tasks. The results indicate that the proposed ensemble-based approach significantly outperforms individual models and existing state-of-the-art techniques. These findings demonstrate the potential of ensemble methods in advancing brain signal decoding, offering new possibilities for non-verbal communication applications, particularly in brain-computer interface systems aimed at aiding individuals with speech impairments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.