Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Bayesian Comparisons Between Representations (2411.08739v3)

Published 13 Nov 2024 in cs.LG and q-bio.QM

Abstract: Which neural networks are similar is a fundamental question for both machine learning and neuroscience. Here, it is proposed to base comparisons on the predictive distributions of linear readouts from intermediate representations. In Bayesian statistics, the prior predictive distribution is a full description of the inductive bias and generalization of a model, making it a great basis for comparisons. This distribution directly gives the evidence a dataset would provide in favor of the model. If we want to compare multiple models to each other, we can use a metric for probability distributions like the Jensen-Shannon distance or the total variation distance. As these are metrics, this induces pseudo-metrics for representations, which measure how well two representations could be distinguished based on a linear read out. For a linear readout with a Gaussian prior on the read-out weights and Gaussian noise, we can analytically compute the (prior and posterior) predictive distributions without approximations. These distributions depend only on the linear kernel matrix of the representations in the model. Thus, the Bayesian metrics connect to both linear read-out based comparisons and kernel based metrics like centered kernel alignment and representational similarity analysis. The new methods are demonstrated with deep neural networks trained on ImageNet-1k comparing them to each other and a small subset of the Natural Scenes Dataset. The Bayesian comparisons are correlated to but distinct from existing metrics. Evaluations vary slightly less across random image samples and yield informative results with full uncertainty information. Thus the proposed Bayesian metrics nicely extend our toolkit for comparing representations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube