Analogical Reasoning Within a Conceptual Hyperspace (2411.08684v1)
Abstract: We propose an approach to analogical inference that marries the neuro-symbolic computational power of complex-sampled hyperdimensional computing (HDC) with Conceptual Spaces Theory (CST), a promising theory of semantic meaning. CST sketches, at an abstract level, approaches to analogical inference that go beyond the standard predicate-based structure mapping theories. But it does not describe how such an approach can be operationalized. We propose a concrete HDC-based architecture that computes several types of analogy classified by CST. We present preliminary proof-of-concept experimental results within a toy domain and describe how it can perform category-based and property-based analogical reasoning.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.