Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Disentangled Representations for Perceptual Point Cloud Quality Assessment via Mutual Information Minimization (2411.07936v1)

Published 12 Nov 2024 in cs.CV

Abstract: No-Reference Point Cloud Quality Assessment (NR-PCQA) aims to objectively assess the human perceptual quality of point clouds without relying on pristine-quality point clouds for reference. It is becoming increasingly significant with the rapid advancement of immersive media applications such as virtual reality (VR) and augmented reality (AR). However, current NR-PCQA models attempt to indiscriminately learn point cloud content and distortion representations within a single network, overlooking their distinct contributions to quality information. To address this issue, we propose DisPA, a novel disentangled representation learning framework for NR-PCQA. The framework trains a dual-branch disentanglement network to minimize mutual information (MI) between representations of point cloud content and distortion. Specifically, to fully disentangle representations, the two branches adopt different philosophies: the content-aware encoder is pretrained by a masked auto-encoding strategy, which can allow the encoder to capture semantic information from rendered images of distorted point clouds; the distortion-aware encoder takes a mini-patch map as input, which forces the encoder to focus on low-level distortion patterns. Furthermore, we utilize an MI estimator to estimate the tight upper bound of the actual MI and further minimize it to achieve explicit representation disentanglement. Extensive experimental results demonstrate that DisPA outperforms state-of-the-art methods on multiple PCQA datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.