Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scaling policy iteration based reinforcement learning for unknown discrete-time linear systems (2411.07825v1)

Published 12 Nov 2024 in math.OC

Abstract: In optimal control problem, policy iteration (PI) is a powerful reinforcement learning (RL) tool used for designing optimal controller for the linear systems. However, the need for an initial stabilizing control policy significantly limits its applicability. To address this constraint, this paper proposes a novel scaling technique, which progressively brings a sequence of stable scaled systems closer to the original system, enabling the acquisition of stable control gain. Based on the designed scaling update law, we develop model-based and model-free scaling policy iteration (SPI) algorithms for solving the optimal control problem for discrete-time linear systems, in both known and completely unknown system dynamics scenarios. Unlike existing works on PI based RL, the SPI algorithms do not necessitate an initial stabilizing gain to initialize the algorithms, they can achieve the optimal control under any initial control gain. Finally, the numerical results validate the theoretical findings and confirm the effectiveness of the algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube