Papers
Topics
Authors
Recent
2000 character limit reached

MaLei at the PLABA Track of TREC 2024: RoBERTa for Term Replacement -- LLaMA3.1 and GPT-4o for Complete Abstract Adaptation (2411.07381v4)

Published 11 Nov 2024 in cs.CL

Abstract: This report is the system description of the MaLei team (Manchester and Leiden) for the shared task Plain Language Adaptation of Biomedical Abstracts (PLABA) 2024 (we had an earlier name BeeManc following last year), affiliated with TREC2024 (33rd Text REtrieval Conference https://ir.nist.gov/evalbase/conf/trec-2024). This report contains two sections corresponding to the two sub-tasks in PLABA-2024. In task one (term replacement), we applied fine-tuned ReBERTa-Base models to identify and classify the difficult terms, jargon, and acronyms in the biomedical abstracts and reported the F1 score (Task 1A and 1B). In task two (complete abstract adaptation), we leveraged Llamma3.1-70B-Instruct and GPT-4o with the one-shot prompts to complete the abstract adaptation and reported the scores in BLEU, SARI, BERTScore, LENS, and SALSA. From the official Evaluation from PLABA-2024 on Task 1A and 1B, our much smaller fine-tuned RoBERTa-Base model ranked 3rd and 2nd respectively on the two sub-tasks, and the 1st on averaged F1 scores across the two tasks from 9 evaluated systems. Our LLaMA-3.1-70B-instructed model achieved the highest Completeness score for Task 2. We share our source codes, fine-tuned models, and related resources at https://github.com/HECTA-UoM/PLABA2024

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.