Papers
Topics
Authors
Recent
2000 character limit reached

Effect sizes as a statistical feature-selector-based learning to detect breast cancer (2411.06868v1)

Published 11 Nov 2024 in stat.ML, cs.LG, and eess.IV

Abstract: Breast cancer detection is still an open research field, despite a tremendous effort devoted to work in this area. Effect size is a statistical concept that measures the strength of the relationship between two variables on a numeric scale. Feature selection is widely used to reduce the dimensionality of data by selecting only a subset of predictor variables to improve a learning model. In this work, an algorithm and experimental results demonstrate the feasibility of developing a statistical feature-selector-based learning tool capable of reducing the data dimensionality using parametric effect size measures from features extracted from cell nuclei images. The SVM classifier with a linear kernel as a learning tool achieved an accuracy of over 90%. These excellent results suggest that the effect size is within the standards of the feature-selector methods

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.