Reverse Prompt Engineering (2411.06729v3)
Abstract: We explore a new LLM inversion problem under strict black-box, zero-shot, and limited data conditions. We propose a novel training-free framework that reconstructs prompts using only a limited number of text outputs from a LLM. Existing methods rely on the availability of a large number of outputs for both training and inference, an assumption that is unrealistic in the real world, and they can sometimes produce garbled text. In contrast, our approach, which relies on limited resources, consistently yields coherent and semantically meaningful prompts. Our framework leverages a LLM together with an optimization process inspired by the genetic algorithm to effectively recover prompts. Experimental results on several datasets derived from public sources indicate that our approach achieves high-quality prompt recovery and generates prompts more semantically and functionally aligned with the originals than current state-of-the-art methods. Additionally, use-case studies introduced demonstrate the method's strong potential for generating high-quality text data on perturbed prompts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.