Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Reverse Prompt Engineering (2411.06729v3)

Published 11 Nov 2024 in cs.CL

Abstract: We explore a new LLM inversion problem under strict black-box, zero-shot, and limited data conditions. We propose a novel training-free framework that reconstructs prompts using only a limited number of text outputs from a LLM. Existing methods rely on the availability of a large number of outputs for both training and inference, an assumption that is unrealistic in the real world, and they can sometimes produce garbled text. In contrast, our approach, which relies on limited resources, consistently yields coherent and semantically meaningful prompts. Our framework leverages a LLM together with an optimization process inspired by the genetic algorithm to effectively recover prompts. Experimental results on several datasets derived from public sources indicate that our approach achieves high-quality prompt recovery and generates prompts more semantically and functionally aligned with the originals than current state-of-the-art methods. Additionally, use-case studies introduced demonstrate the method's strong potential for generating high-quality text data on perturbed prompts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.