Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Harnessing High-Level Song Descriptors towards Natural Language-Based Music Recommendation (2411.05649v2)

Published 8 Nov 2024 in cs.IR

Abstract: Recommender systems relying on LLMs (LMs) have gained popularity in assisting users to navigate large catalogs. LMs often exploit item high-level descriptors, i.e. categories or consumption contexts, from training data or user preferences. This has been proven effective in domains like movies or products. However, in the music domain, understanding how effectively LMs utilize song descriptors for natural language-based music recommendation is relatively limited. In this paper, we assess LMs effectiveness in recommending songs based on user natural language descriptions and items with descriptors like genres, moods, and listening contexts. We formulate the recommendation task as a dense retrieval problem and assess LMs as they become increasingly familiar with data pertinent to the task and domain. Our findings reveal improved performance as LMs are fine-tuned for general language similarity, information retrieval, and mapping longer descriptions to shorter, high-level descriptors in music.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube