Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bridging the Gap between Learning and Inference for Diffusion-Based Molecule Generation (2411.05472v1)

Published 8 Nov 2024 in cs.LG

Abstract: The efficacy of diffusion models in generating a spectrum of data modalities, including images, text, and videos, has spurred inquiries into their utility in molecular generation, yielding significant advancements in the field. However, the molecular generation process with diffusion models involves multiple autoregressive steps over a finite time horizon, leading to exposure bias issues inherently. To address the exposure bias issue, we propose a training framework named GapDiff. The core idea of GapDiff is to utilize model-predicted conformations as ground truth probabilistically during training, aiming to mitigate the data distributional disparity between training and inference, thereby enhancing the affinity of generated molecules. We conduct experiments using a 3D molecular generation model on the CrossDocked2020 dataset, and the vina energy and diversity demonstrate the potency of our framework with superior affinity. GapDiff is available at \url{https://github.com/HUGHNew/gapdiff}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.